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Abstract—Outlier detection finds numerous uses and 

applications in different industries such as fraud detection, 

structural defect analysis, detecting mislabeled data and 

incursion detection. An outlier is a pattern which is different to 

other remaining patterns in the data set. This paper examines 

the different algorithms which can be used to detect outliers in 

a dataset, the principles governing its viability and the trade-

offs between various methods. The paper also reviews the 

recent developments in the field and the future scope of 

research.  
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I.  INTRODUCTION  

Outlier detecting systems have numerous real-world 

applications such as fraud detection in credit cards and calling 

cards, discovering computer incursion and criminal behaviors 

in loan application processing, detecting network system 

instability, etc. Major progress has been made in the area of 

outlier detection in the last decade and hence finds many 

researchers in academia interested in pursuing new 

developments in the field. In recent years, outlier detection 

methods have found widespread adoption in the medical 

industry to predict outliers in the medical records associated 

with a patient. This helps doctors and medical researchers to 

predict the chances of a particular disease and often times to 

preempt the occurrence of such ailments by suggesting 

corrective action for the same. Outlier detection systems find 

numerous applications in logistics, public safety, and transport 

system along with many other uses. 

 

Outlier detection systems have also entered the realms of the 

banking industry, especially in tracking fraud and risky loan 

application processing. Tracking fraud and having an effective 

intrusion detection system is a much difficult and elusive goal 

for various system administrators and information security 

researchers. The different methods proposed in this paper are 

often used in silos or in conjunction with one another to get the 

desired outputs. 

 

Outliers can be of two types: univariate (single variable) and 

multivariate (many variables). Univariate outliers can be found 

while looking at a diffusion of values in a singular feature space. 

Multivariate outliers can be found in an n-dimensional space of 

n-features. 

 While looking at distributions in an n-dimensional spaces can 

be very difficult and taxing to do manually, therefore we need 

to train a model to flag it for us. Outliers can be also classified 

into different segments, depending upon their environment: 

point outliers, contextual outliers, or collective outliers. Point 

outliers are respective data points that lies far away from the 

rest of the distribution. Contextual outliers can be regarded as 

noise in data, such as punctuation motifs when trying to analyze 

text data or noisy signal in the background at the time of 

performing speech recognition. 
Over the years, various machine learning algorithms have 

been explored for the design of an Outlier detection system such 
as – linear regression, logistic regression, neural networks, and 
support vector machines with various kernels. Each of these 
algorithms has different success rates in detecting outliers in a 
dataset depending on the type of the data set and also on the 
nature of the outliers. Also discussed are the advantages and 
disadvantages of the various algorithms and the scope of 
integration of other techniques to improve the efficiency of 
current systems. The content listed below is organized as 
follows. An overview of machine learning algorithms is 
presented in Section II. In Section III, we discuss the different 
datasets and the parameters to judge the accuracy of results 
presented in Section IV and Section V proposes the future scope 
of research. 

II. OUTLIER DETECTION ALGORITHMS AND TECHNIQUES 

OF OUTLIER ESTIMATION 

As defined by Hawkins in 1980, an outlier is – “(an) observation 

which deviates so much from other observations as to arouse 

suspicion it was generated by a different mechanism.” In other 

words, an outlier is an observation that diverges from an overall 

pattern on a sample. In the process of acquiring, gathering, 

processing and gaining insights from data, outliers may come 

from numerous sources and hide in multiple dimensions. 

Outliers which are not a product of an error are called novelties. 

 

Identifying outliers is of prime importance in almost any 

quantitative disciplines like Physics, Economy, Finance, 

Machine Learning, and Cyber Security. In machine learning 

and in other quantitative domains the quality of data is equally 

important as the quality of the outlier detection algorithm or 

model. 

 

Some of the most widely used outlier estimation techniques and 

algorithms namely regression, neural networks, support vector 

machines are discussed below in brief and how it can be 

implemented on outlier detection task. These techniques can be 
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used in silos or can be used in conjunction for a more holistic 

solution. 

 

A. Linear Regression 

In supervised learning, we are given a data set (X) and we 

already know what the correct output (y) should look like and 

also knowing that there exists a relationship between the input 

features and the output label. 

 

Supervised learning problems are categorized into "regression" 

and "classification" problems. In a regression problem, we try 

to match results which take on a continuous range of values, 

implying that we are attempting to map out the input variables 

to some existing continuous function, however, for the 

implementation of regression algorithm on a classification task, 

we will assume a threshold i.e. 1.5 times the value predicted by 

the hypothesis to be set as a threshold value indicates anything 

above this threshold will be classified as an outlier point.  

 

In a classification problem, we try to predict results for a 

discrete output. In precise words, we are now trying to map 

input variables into discrete categories or labels.  

 

Our hypothesis function hθ(x) has the general form for linear:  

 

y^ = hθ(x) = θ0*x0 +θ1*x1+ θ2*x2+...+θn*xn 

 

for n number of dimensions in the data 

 

[Note: that the outliers detected are subject to the change in the 

threshold predicted by the linear hypothesis, even though it 

might lead to more number of false positives and false 

negatives] 

 

Example: 

Input(x) Output(y) 

0 4 

1 7 

2 7 

3 8 

 

Suppose we have the following set of training data:  

Now we can make a random guess about our hypothesis (hθ) 

function: θ0=2 and θ1=2. The hypothesis function becomes 

hθ(x)=2+2x. 

 

 
 

Figure1.1- Linear Regression hypothesis plot example with 

optimum θ parameters 

 

So, for input of 1 to our hypothesis, y value corresponding to it 

will be 4. This is separated by 3. We will be trying out various 

values of θ0 and θ1 to try to find values which provide the best 

possible "fit" or the most expressive "straight line" through 

most of the data points mapped on the x-y plane as shown in 

figure 1.1 

 

Cost Function (J): -  

We can measure the accuracy of our hypothesis function by 

using a cost function. This takes an average (actually a least 

means square approach) of all the results of the hypothesis with 

inputs compared to the actual output. 

 

𝐽(θ0, θ1,…...Θn) = (1/2*m) (∑ (𝑦^𝑚
1 − 𝑦𝑖)^2, where  

 

y^ = hθ(x) = θ0*x0 +θ1*x1+ θ2*x2+...+θn*xn 

 

(For n dimensions) 

 

yi= Actual label of the data 

m= Total number of rows/samples  

 

Our objective is to minimize this cost function in order to obtain 

the best fit line (hypothesis). We can minimize this function 

with an approach known as gradient descent as can be seen in 

Fig3. 

 

Gradient Descent: 

We will now see how well our hypothesis fits into the data by 

our cost function (J). Now we need to estimate the parameters 

in hypothesis function. This is where we will use gradient 

descent. To visualize the concept better, we will now put θ0 on 

the x-axis and θ1 on the y-axis, with the cost function on the 

vertical z-axis, all the points on our graph will be the outcome 

of the cost function using our hypothesis with those specific 

theta parameters we try to look for, making it a convex shaped 

function similar to Fig1.2 
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Figure1.2- The plot shows the varying Cost (J) is a convex 

function 

When our cost function reaches the very bottom of the pits 

depicted in our graph, then we would have achieved our 

objective. When the value reaches the minimum, then we have 

optimized our function or in other words, the theta parameters 

depict the global minima. 

 

One way of finding out the optimal theta parameters is by 

differentiating the cost equation. The derivative also indicates 

the slope of the tangential line at any chosen point on the cost 

function and this in-turn indicates the direction we need to 

move towards in order to obtain the minima. Learning rate or α 

is the parameter used to determine the size of each step taken in 

the direction of steepest descent. Figure 1.4 illustrates this 

example. 

 

Setting α to too high a value might cause the algorithm to 

overshoot the point instead of converging at the global minima 

[2]. This process is repeated iteratively such that the 

convergence graph is set straight or narrowed out in the end, as 

is depicted in the figure below for vowels.  

 

 

Fig1.3. Converging of Cost (J) after as iterations progress 

(dataset – vowels.mat)  

 

For linear regression problems, applying gradient descent to 

minimize the cost function entails updating the cost iteratively 

while progressing steadily towards the global minimum. The 

weights (θ) are updated as: 

 

θj = θj – 𝛼 (
𝜕

𝜕θj
) ∗ 𝐽(θ0, θ1) 

 

 
 

Fig1.4. Gradient descent  

 

The weight (θ) can also be estimated by another common 

approach known as the Normal Equation method. 

 

Normal Equation Method: 

 

In the normal equation method, optimum weight (θ) is 

estimated without having to perform any optimizations on the 

cost function. The optimum value is given by the equation: 

 

Θ= (XT*X)-1 XT y 

 

In practice, estimating optimal weights by the Normal equation 

method almost always performs poorly in comparison to the 

gradient descent method, as is re-enforced by the results section 

of our paper. Generally, gradient descent is preferred to Normal 

equation method as time complexity of calculating the inverse 

in the normal equation method is to the order of O (n3). Gradient 

descent on the other hand has the time complexity of O (n2).  

However, the tradeoff is the absence of learning rate and 

iterations required in the gradient descent method [3].  

B. Logistic Regression 

Logistic regression is applied to classify a discrete range of 

values. In a binary classification problem, the target values are 

either of two values. In all our datasets, y assumes one of two 

values ‘0’ denoting an inlier and ‘1’ denoting an outlier. Hence, 

y∈{0,1}. Zero is sometimes referred to as the negative group or 

class and similarly ‘One’ is referred to as the positive group or 

class [4]. 

 

If x (i) is known to us, the corresponding y (i) would be our 

labels in case of the training example. 
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We can infer that hθ(x) will not take values larger than 1 or 

lesser than 0 if  y ∈ {0, 1}. Hence, we modify hθ(x) such that it 

now satisfies the below range. 

 

 0≤hθ(x)≤1 

 

This is done by inserting θTx in the Logistic Function which is 

commonly referred to as the sigmoid function g(z). 

 

Where, 

hθ(x) = g(θTx) 

z = θTx 

g(z) = 1/(1+e-z) 

 

 
Fig2.1. Sigmoid Function  

 

We use a different cost function from the one used in linear 

regression because the Logistic Function causes the output to 

be wavy. Such a wave-like nature implies multiple local 

optimum values thus causing our optimization algorithm to get 

stuck in the local minima. In other words, such a function will 

not be a convex function [5]. 

 

Thus, the cost function (J) in case of logistic regression looks 

likes: 

 

Cost (hθ(x),y)= -y * log(hθ(x))+(1-y) * log(1-hθ(x)) 

 

Inputting (y=0 or y=1) in the respective parts causes that part to 

be nullified. The generic cost equation is represented as:  

 

J(θ)=(-1/m)*∑ [𝑚
𝑖=1 y(i)log(hθ(x(i)))+(1-y(i))log(1-

hθ(x(i)))+λ/2m∑ 𝑄𝑚
𝑗=1 j

2] 

 

The regularization parameter, λ, depicted in the above equation 

makes the hypothesis generic and less prone to over-fitting. [6] 

 

To classify our dataset, we now apply gradient descent 

algorithm and minimize the cost function.  

 

C. Artificial Neural Networks 

Neural networks basically consist of three layers-  

 

1. Input layer– As the name suggests, this layer is used to feed 

our network with the required inputs in (i.e. dimensions and 

features) our data. We feed the network with every row sample 

present in our data set on every epoch. 

 

2. Hidden layers– All layers present in between the input layer 

and output layer are classified into this category. Generally, 

multiple hidden layers help in improving the accuracy of the 

final prediction. For our model, we employ 2 hidden layers and 

each such layer consists of half the number of nodes present in 

the input layer.  

 

A generic way of deciding the number of nodes present in the 

hidden layer can be given by the formulae below: 

 

Nh = Ns / (𝛼*(Ni+No)) 

 

Ni = Number of input neurons 

No= Number of output neurons 

Ns = Number of samples in training data set 

𝛼 = An arbitrary scaling factor usually 2-10  

 

Considering the low sample size of some of the training data 

sets and in order gain a greater efficiency (Hit rate), we will 

stick with the first approach where the number of nodes in the 

hidden layers are always equal to half the value of nodes in the 

network’s input layer and all our results are based on the same 

approach. 

 

3. Output layer- The output layer contains the number of nodes 

we want to classify the various outliers of our data set in. In our 

case, we have two nodes with output {0, 1} for inlier point and 

{1, 0} for an outlier. 

 

Particular impetus must be given to the fact of initializing the 

random weights with a value near to but not equal to zero,  the 

network’s next layer computes to be the weighted sum of the 

previous layer and is followed by the activation function. For 

our purpose, we have employed the Sigmoid activation used 

previously in logistic regression see figure 3.1. [7] 

 

 
Fig3.1. Forward Activation    

 

A bias term equal to 1 is also added before feeding the output 

to the next layer.  

 

A weight optimizing algorithm together with back-propagation 

is employed to tune the random weights. To calculate errors in 

our prediction, back-propagation compares the output against 

the random weights to the desired labels for the specific data 

row.   

 

The error in the last layer is denoted by 𝛿(l). We calculate the 

error in each hidden layer upon moving backward towards the 
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first hidden layer for 𝛿(L-1), 𝛿(L-2),…… 𝛿(2), using a generic 

formula defined as 

 

𝛿(l) = ((θ(l))T𝛿(L-1)).*a(l).*(1-a(l)) 

Here a(l) define the vector of outputs for l, th layer. [7] 

 

The generic cost function (J) for neural networks, is defined as: 

 

J(θ)=(-1/m)*[∑ ∑ 𝑦𝐾
𝑘=1

𝑚
𝑖=1 k

(i)*log(hθ(x(i)))k+(1-y(i)
k)*log(1-

hθ(x(i)))k]+(λ/2m)*∑ ∑ ∑ (𝑠𝑙+1
𝑗=1

𝑠𝑙
𝑖=1

𝐿−1
𝑙=1 θji

(l))2 

 

Also, ∆i,j
(l) = ∆i,j

(l) + aj
(l)𝛿i

(l+1) 

 

In the subsequent step, we calculate partial derivatives of the 

cost function with respect to current weights denoted as Dij
(l) 

lth layer. 

 

Dij
(l) = 

𝜕

𝜕θij
∗  𝐽(θ) 

 

The Dij
(l) for every layer can also be defined as: 

 

Di,j
(l) = (

1

𝑚
) (∆i,j

(l)+ λθi,j
(l)),if j is not zero. (with regularization) 

 

Di,j
(l) = (

1

𝑚
)∆i,j

(l) if j=0 (without regularization) 

 

We will now update the weights assigned with the hidden layers 

by subtracting the partial derivative term (Dij) and then feeding 

weights and cost to an advanced optimization algorithm as 

previously explained in the gradient descent approach. 

 

With every epoch, optimization algorithm will take steps in the 

direction of the global minima calculating the optimal weight 

parameters required to classify an anomaly. 

 

Once the weights are trained on all the samples, the result is a 

fine-tuned set of parameters which can be further be tested on 

the unseen remaining (30%) of the test data as demonstrated in 

the results section. 

 

D. Support Vector Machines 

SVM is a perceptron-like neural network and is basically used 

for binary classification of patterns that can be linearly 

separated by a decision boundary. A perceptron-solution, 

however, is different because a number of possible hyper-

planes can be made between the two classes. The points which 

are at the minimal distance from the optimal hyper-plane are 

called as “support vectors.” Classifiers that make use of this 

attribute are hence called as support vector machines. [9] 

 

The elementary idea of Support Vector Machines is to generate 

a hyper-plane which can maximize the separation between the 

margins belonging to the zero (normal) and the one (anomaly) 

classes. [10] One of the favourable feature of the SVM is that it 

is a rough enactment of the Structural Risk Minimization 

principle, which according to Wikipedia is, based on analytical 

learning theory rather than the Empirical Risk Minimization 

method, in which the classification function is borrowed by 

minimizing the Mean Square Error over the training data set. 

One of the major suppositions of SVM is that all samples are 

individually and equitably, at the same time, distributed in the 

training set. [9] 

 

Several alterations and improvements are made since the 

introduction of the original idea: hard-margin SVMs for 

differentiable cases, soft-margin SVMs that are used for cases 

that are non-separable and robust SVMs that are used to exhibit 

great generalization characteristics while handling data which 

is noisy and mislabeled. [11] 

 

If we consider our training samples to be (x1, y1), · · · , (xl, yl), 

yi∈ {0, 1}, i = 1, ..., l where {(xi , yi)} i = 1, ..., l  are feature 

vectors and yi∈ {0, 1} , i = 1, ..., l are the corresponding labels, 

the zero class represents normal behavior and one class 

represents incongruous behavior. Therefore, the classification 

problem can now be mannered as a constrained optimization 

problem. [1] It would be ethical if, in a given a set used for 

training, we somehow managed to find a boundary, also known 

as a decision boundary, that allow us to predict all the training 

examples that are correct and confident, meaning far from the 

decision boundary.  

 

The cost function (J) for Support Vector Machine is detailed 

below: 

 

Min (C∑ [𝑚
𝑖=0 y(i)cost1(θTx(i))+(1-y(i))cost0(θTx(i))]+(1/2)∑ 𝜃𝑛

𝑖=𝑞 j
2) 

 

In the above equation, ‘C’ is a positive value that is used for 

controlling the penalty for training examples that are not 

classified correctly. A large C instructs the SVM to try and 

classify all the examples correctly. C plays a role identical to 

1/λ, where λ is the regularization parameter that we were using 

previously for logistic regression. 

 

The effect of C with different values is demonstrated in the 

figures illustrated with numbers Fig4.1 – Fig4.3 on Vowels 

dataset. 
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Fig4.1 Vowels Dataset which can be separated by a linear 

boundary    

 

 

 

 
Fig4.2 (a) SVM decision boundary with C=1   

 

 
Fig4.2 (b) SVM decision boundary with C=150 

 

If the data-set is not linearly separable or we want to implement 

a nonlinear boundary curve, then we use the Gaussian kernel to 

find out the decision boundaries. 

 

Using Gaussian kernels 

 

The Gaussian kernel can be understood as an analogous 

function which is used for measuring the “distance” between a 

combination of examples, (x(i), x(j)). Furthermore, the 

Gaussian kernel is parameterized by a bandwidth parameter, σ, 

which is used to determine the rapidness of the decline of the 

similarity metric to 0 as the examples are moved further apart 

from each other. 

The Gaussian Kernel function is defined as: 

 

Kgaussian(x(i),x(j)) = exp ( - ||x(i)– x(j)||2/2𝜎2)  

= exp (- ∑ (𝑛
𝑘=1 x(i)

kx(j)
k)2/2𝜎2) 

 

 
Fig4.3 (a) SVM decision boundary with C=1 after applying 

Gaussian Kernel  

 

 
Fig 4.3 (b) SVM decision boundary with C=150 after applying 

Gaussian Kernel  

 

The implementation of SVM with kernels such as Gaussian or 

polynomial could result in learning a better nonlinear complex 

boundary curve and in turn yielding higher accuracy but often 

comes at the cost of extra computational power required. 

 

III. DATA SETS AND OUTLIER DETECTION EFFICIENCY METRICS 

The application of the algorithms detailed above to a chosen 
set of datasets and their results are discussed below. The 
different data sets on which the machine learning algorithms are 
applied are discussed in brief. For all data sets being tested, for  
y-label = (1 – for Outliers, 0 – for Inliers)  here is a small 
description about the first 5 datasets tested: 

1. Vowels.mat – It is a multivariate time series data, where 
nine male speakers proclaimed two Japanese vowels /ae/ 
successively. It is a classification dataset to separate the 
speakers. For outlier detection, every row in the data used for 
training is considered as a separated data point. [C. C. Aggarwal 
and S. Sathe, “Theoretical foundations and algorithms for outlier 
ensembles.” ACM SIGKDD Explorations Newsletter, vol. 17, 
no. 1, pp. 24–47, 2015]  

2. Lympho.mat - It is a multi-class dataset having four 
classes, but two of them are quite small (2 and 4 data records). 
Therefore, those two small classes are merged and considered as 
outliers compared to other two large classes (81 and 61 data 
records). [Lazarevic and V. Kumar, “Feature bagging for outlier 
detection.” in ACM SIGKDD, 2005, pp. 157–166] 

3. Letter.mat – Capital letters of the English alphabet 
represented in 16 dimensions. To get data suitable for outlier 
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detection, we subsample data from 3 letters to form the normal 
class and randomly concatenate pairs of them so that their 
dimensionality doubles. To form the outlier class, we randomly 
select few instances of letters that are not in the normal class and 
concatenate them with instances from the normal class. 
[https://www.inf.ethz.ch/personal/mcbrian/pdfs/odd.pdf] 

4. Glass.mat – This dataset contains attributes regarding 
several glass types (multi-class). Here, class 6 is a clear minority 
class; as such points of class 6 are marked as outliers, while all 
other points are inliers. [Keller, E. Muller, K. Bohm.“HiCS: 
High-contrast subspaces for density-based outlier ranking.” 
ICDE, 2012] 

5. Vertebral.mat - The data set is characterized by six 
biomechanical attributes derived from the shape and orientation 
of the pelvis and lumbar spine (in this order): pelvic incidence, 
pelvic tilt, lumbar lordosis angle, sacral slope, pelvic radius and 
grade of spondylolisthesis. The following convention is used for 
the class labels: Normal (NO) and Abnormal (AB). Here, “AB” 
is the majority class having 210 instances which are used as 
inliers and “NO” is rescaled from 100 to 30 instances as an 
outlier class. [Saket Sathe and Charu C. Aggarwal. LODES: 
Local Density meets Spectral Outlier Detection. SIAM 
Conference on Data Mining, 2016] 

We look at some of the performance measure metrics in brief. 

A. Hit Rate 

Hit rate is the percentage of successful predictions to the total 
number of attempts. A higher hit rate implies better performance 
of our algorithm in detecting outliers.  

B. Miss Rate 

Miss rate is the percentage of unsuccessful predictions to the 
total number of attempts. Higher miss rate implies poor 
performance of our algorithm in detecting outliers.  

C. False Positives 

False positives are test results which falsely characterize 

that a particular state or a specific attribute is present. For 

Example, if our algorithm classifies an inlier point as an 

outlier, then such a result is a false positive. 

D. False Negatives 

False negatives are results where our algorithm 

misclassifies the outlier to be an inlier. 

 

IV. RESULTS OF OUTLIER DETECTION ALGORITHMS 

In this section, we showcase an overview of the results after 

applying the different outlier detection algorithms to our 

datasets. We then discuss the challenges we faced and particular 

parameters if any and justify our choice for the same.  
 

A. Linear Regression 

The Linear regression algorithm is applied to the five datasets, 

and the efficiency metrics are calculated on the results. 

Minimization of the cost function is done using the gradient 

descent and later compared with the normal equation method. 

As demonstrated in the results below, applying gradient descent 

to estimate the optimal θ parameter always outperforms the 

normal equation method. 

 

The Gradient descent approach always proves over normal 

equations as explained in the table below:  

 

Datasets Hit Rate False 

Negatives 

False 

Positives 

Vowels 91.140 0 129 

Lympho 89.864 0 15 

Letter 89.810 0 163 

Glass 88.780 0 24 

Vertebral 90.010 0 24 

Table1. Linear (Gradient Descent) Results 

 

 

 

 

 

 
 

Fig5. (a-1) Linear regression based on a threshold 

 

 
 

Fig5. (a-2) Linear regression depicting false positives  
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B. Logistic Regression 

The logistic regression algorithms are applied on the data sets 

after having regularized (a technique that applies to objective 

functions in ill-posed optimization problems) the parameters as 

well. 

 

Two approaches have been utilized to test the accuracy of our 

prediction when the lambda parameter is set to 0. The two 

approaches are detailed in brief. 

 

70-30 Train-Test Approach: We split our dataset into 2 parts. 

The first part is called training set (contains randomly shuffled 

70% of the data with at least 70% of the outliers) and the second 

part is called testing data (contains randomly shuffled 30% of 

the data with at least 30% of the outliers)   

 

Cross-validation Approach: We split our data into 5 parts 

(making sure that every part has at a minimum (20%) of the 

outlier data to train on) and then we compare each part with all 

the remaining parts. This approach makes sure that each 

section contributes to both training and testing. 

 

Logistic regression with cross-validation: 

 

Datasets Hit Rate False 

Negatives 

False 

Positives 

Vowels 98.351 1 0 

Lympho 97.950 0 0 

Letter 91.938 24 2 

Glass 94.419 1 0 

Vertebral 90.000 5 5 

Table 2.  Logistic regression (Cross-validation, λ=0) Results 

 

 
Fig 5. (b) Logistic regression with no regularization parameter  

 

 
Fig5. (c) Logistic regression with regularization parameter 

 

C. Neural Networks 

For neural networks, we see that the results when computed 

with optimal regularization parameters (λ=0.5 for anomaly 

detection) and a fixed number of nodes in each of the 2 
hidden layers. Low accuracies in some cases are due to the 

severely limited size of the dataset along with the architectural 

design of ANN used. The results of applying the neural network 

to the five datasets are detailed below: 

 

 

Datasets Hit Rate False 

Negatives 

False 

Positives 

Vowels 99.77 1 0 

Lympho 97.78 1 0 

Letter 94.79 22 3 

Glass 98.46 2 0 

Vertebral 88.11 10 0 

Table.3. ANN Accuracy Results 

 

 
Fig5. (d) ANN with 2 hidden layers  

 

D. Support Vector Machines 

The Support Vector Machines outperformed all other 

supervised learning algorithms when it comes to the Hit-rate of 

our model. As it can be seen in the results below, in our case, 

applying Linear Kernel and then drawing the decision boundary 

was able to classify more number of outliers and inliers 

correctly. The results are detailed below. 
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Datasets Hit Rate False 

Negatives 

False 

Positives 

Vowels 100 0 0 

Lympho 100 0 0 

Letter 93.94 27 0 

Glass 98.46 0 1 

Vertebral 84.72 6 5 

Table4. SVM Accuracy Results 

 
Fig5. (e) SVM Results with linear kernel 

 

 

 

 

 

 

 

 

 

 

Datasets Hit Rate False 

Negatives 

False 

Positives 

Vowels 100 0 0 

Lympho 97.7 1 0 

Letter 93.94 27 0 

Glass 98.46 0 1 

Vertebral 86.11 10 0 

Table5. SVM Accuracy with Gaussian Results 

 

 
Fig5. (f) SVM Result with Gaussian kernel 
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The linear approach had previously flagged many false 

positives which are ideally not suitable for anomaly detection 

approach and therefore we will now test our algorithms on 

more diverse datasets listed below: 

 

V. CONCLUSION AND FUTURE SCOPE 

In the comparison of all the approaches used for testing on all 

of the anomaly detection datasets, the SVM's, in general, has 

offered the highest accuracy for most of the low dimensional 

data. In most cases, its time complexity is far too low when 

compared with the Artificial Neural Networks. 

 

The choice of detection algorithm heavily depends on the 

dataset itself as seen when dealing with digits or speech data 

sets or in general the datasets with a large number of columns 

having many samples, the ANN approach has outperformed the 

SVM’s prediction.  

 

The logistic regression approach fails to compete with SVM’s 

and ANN's, as seen for most of the datasets and hence would 

not be a suitable choice for the task. 

 

With improvements in the field, there are many other hybrid 

models involving the convolutional neural networks and the 

state of the art capsule networks could possibly yield better 

results on the task of anomaly detection. 

 

Apart from all the supervised learning approaches a lot of 

unsupervised learning algorithms such as the k means 

clustering and Self-organizing maps can be tested and can prove 

to be more efficient.     
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